

A Level Mathematics B (MEI)

H640/01 MEI Pure Mathematics and Mechanics

Pure

Question Set 4

1. Simplify
$$\left(\frac{27}{x^9}\right)^{\frac{2}{3}} \times \left(\frac{x^4}{9}\right)$$
.

$$\frac{(27)^{\frac{2}{3}}}{(x^4)^{\frac{2}{3}}} = \frac{(3\sqrt{27})^{\frac{2}{3}}}{x^{\frac{1\times\frac{2}{3}}{3}}} = \frac{\cancel{x}}{\cancel{x}^6} \times \frac{\cancel{x}^4}{\cancel{y}} = \frac{\cancel{x}^4}{\cancel{x}^6} = \cancel{x}^{\frac{4-6}{6}} = \cancel{x}^{\frac{2}{3}}$$

$$= \frac{1}{\cancel{x}^2}$$

[2]

[3]

2. Express
$$\frac{a+\sqrt{2}}{3-\sqrt{2}}$$
 in the form $p+q\sqrt{2}$, giving p and q in terms of a . [3]

$$\frac{\alpha + \sqrt{2}}{3 - \sqrt{2}} \times \frac{(3 + \sqrt{2})}{(3 + \sqrt{2})} = \frac{3\alpha + \alpha\sqrt{2} + 3\sqrt{2} + 2}{7}$$

$$\frac{3a+2}{7} + \frac{(a+3)\sqrt{2}}{7}$$

3. The points A and B have position vectors
$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -1 \\ 4 \\ 8 \end{pmatrix}$ respectively.

Show that the exact value of the distance AB is $\sqrt{101}$.

$$\overrightarrow{BA} = \begin{bmatrix} -\frac{1}{4} \\ \frac{2}{8} \end{bmatrix} - \begin{bmatrix} \frac{3}{2} \\ -\frac{1}{1} \end{bmatrix} = \begin{bmatrix} -\frac{4}{4} \\ \frac{2}{4} \end{bmatrix}$$

$$\begin{vmatrix} \overrightarrow{BA} \end{vmatrix} = \sqrt{4^2 + 2^2 + 4^2}$$

$$\begin{vmatrix} \overrightarrow{BA} \end{vmatrix} = \sqrt{101}$$

Find the second derivative of (x² + 5)⁴, giving your answer in factorised form.

$$U = x^{2} + 5$$

$$V = U^{4}$$

$$\frac{dV}{du} = 4U^{3}$$

$$\frac{dV}{dx} = 6x(x^{2} + 5)^{2}$$

$$4x 2a(x^{2} + 5)^{3} = 8(x^{2} + 5)^{2} + 48x^{2}(x^{2} + 5)^{2}$$

$$8x(x^{2} + 5)^{3} = 8(x^{2} + 5)^{2}(7x^{2} + 5)$$

In this question you must show detailed reasoning.

The function f(x) is defined by $f(x) = x^3 + x^2 - 8x - 12$ for all values of x.

Use the factor theorem to show that
$$(x+2)$$
 is a factor of $f(x)$. [2]

$$f(-1) = 0$$

 $(-2)^3 + (-2)^2 - (6x-2) - 12 = 0$

Fig. 6.1 shows the cross-section of a straight driveway 4m wide made from tarmac.

Fig. 6.1

The height h m of the cross-section at a displacement x m from the middle is modelled by $h = \frac{0.2}{1+x^2}$ for $-2 \le x \le 2$.

A lower bound of 0.3615 m² is found for the area of the cross-section using rectangles as shown in Fig. 6.2.

$$\frac{x}{0} \frac{h}{0.2}$$
 = 2× 0,5(0.2+0.16+0.14 $\frac{4}{65}$ +0.04)
 $\frac{50.5}{1.5} \frac{0.16}{0.1}$ = 0.522 (3.5+)
 $\frac{11.5}{1.5} \frac{4}{1.5}$
 $\frac{4}{5}$

(b) Use the trapezium rule with 4 strips to estimate
$$\int_0^2 \frac{0.2}{1+x^2} dx$$
. [2]

Area =
$$\frac{0.2002+0.04+2(0.16+0.14\frac{4}{65})}{2}$$

= $0.221(3sf)$

(c) The driveway is 10 m long. Use your answer in part (b) to find an estimate of the volume of tarmac needed to make the driveway. [2]

7 In this question you must show detailed reasoning.

Fig. 7 shows the curve given parametrically by the equations $x = \frac{1}{t^2}$, $y = \frac{1}{t^3} - \frac{1}{t}$, for t > 0.

Fig. 7

(a) Show that
$$\frac{dy}{dx} = \frac{3-t^2}{2t}$$
.

 $\frac{dy}{dt}(t^{-3}-t^{-1})=-3t^{-4}+t^{-2}$

$$\frac{dx}{dt}(t^{-2}) = -2t^{-3}$$

$$\frac{dy}{dx} = \frac{-3t^{-4} + t^{-2}}{-2t^{-3}} = \frac{3t^{-4} - t^{-2}}{2t^{-3}} = \frac{3t^{-1} - t}{2} \times t = \frac{3 - t^{2}}{2^{+3}}$$

[3]

- (b) Find the coordinates of the point on the curve at which the tangent to the curve is parallel to the line 4y+x=1. 4y+x=1 4y+x[3]

[3]

the line
$$4y+x=1$$
.

$$4y+x=1$$

$$4y+x=1$$

$$y=-x$$

$$y=-x+1/4$$

$$x=-1/4$$

$$y=-1/4$$

By considering $\frac{f(x+h)-f(x)}{h}$, show from first principles that $f'(x)=3x^2-1$. [4]

$$\frac{(x+h)^{3} - (x+h) - (x^{3}-x)}{h}$$

$$\frac{x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3} + x - x + h}{h}$$

 $= \frac{3x^2h + 3xh^2 + h^3 + x - (x + h)}{h} = \frac{3x^2h + 3xh^2 + h^3 - h}{h}$ Sketch the gradient function f'(x). $h \to 0$: $3x^2 - 1$ [2]

(b)

Show that the curve y = f(x) has a single point of inflection which is not a stationary point. (c)

$$\int_{-\infty}^{\infty} (x) = 6x$$

$$x = 0 : 6x = 0$$

$$f''(x) = -606$$

The second differential of the minimum value of f'(51) is zero. When you take values either side of this, you get a change of Bign which indicates there is a non Stationary point of inflection

[1]

[2]

9 Douglas wants to construct a model for the height of the tide in Liverpool during the day, using a cosine graph to represent the way the height changes.

> He knows that the first high tide of the day measures 8.55m and the first low tide of the day measures 1.75 m.

> Douglas uses t for time and h for the height of the tide in metres. With his graph-drawing software set to degrees, he begins by drawing the graph of $h = 5.15 + 3.4 \cos t$.

Verify that this equation gives the correct values of h for the high and low tide. (a) [1]

$$cost=1$$
 $cost=-1$
 $h=5.15+3.4$ $h=5.15-3.4$
 $h=8.55$ $h=1.75$

Douglas also knows that the first high tide of the day occurs at 1 am and the first low tide occurs at 7.20 am. He wants t to represent the time in hours after midnight, so he modifies his equation to $h = 5.15 + 3.4\cos(at + b)$.

Show that Douglas's modified equation gives the first high tide of the day occurring at (b) the correct time if a+b=0. 8.55 = 5.15+3(05 (at +b) a=-53.4 = 3.4 cos (a+6) $\rho = a + -a$ (ii) Use the time of the first low tide of the day to form a second equation relating a and b.

(iii) Hence show that a = 28.42 correct to 2 decimal places.

$$a = -b$$

$$180 = \frac{229}{3} - 9$$

$$180 = 9 \left(\frac{22}{3} - 1 \right)$$

$$28.42 = 9$$

(c) Douglas can only sail his boat when the height of the tide is at least 3 m.

Use the model to predict the range of times that morning when he cannot sail. [3] h=5.15+3.4 LOS (28.426-28.42) 3 < 5.15 + 3.4 COS (28.42 t - 28.42) 5.556 t

5.55665912 he cannot ride So he doesn't sail between 5.33 cumand 9:08 am

(d) The next high tide occurs at 12.59 pm when the height of the tide is 8.91 m.

Comment on the suitability of Douglas's model.

[2]

h=8.36

of 6.91 is higher than the mase height predicted by model